LLaMA详细解读

LLaMA 是目前为止,效果最好的开源 LLM 之一。精读 LLaMA 的论文及代码,可以很好的了解 LLM 的内部原理。本文对 LLaMA 论文进行了介绍,同时附上了关键部分的代码,并对代码做了注释。

摘要

LLaMA是一个系列模型,模型参数量从7B到65B。在大部分的任务上,LLaMA-13B强于GPT-3(175B)。LLaMA-65B的性能,可以和最好的LM相媲美,如Chinchilla-70B 和 PaLM-540B。

一、引言

一般而言,模型越大,效果越好。然而有文献指出[1],当给定计算量的预算之后,最好的performance,并不是最大的模型,而是在一个小模型上用更多的数据进行训练。针对给定的计算量预算,scaling laws可以计算如何选择数据量的大小和模型的大小。然而这忽略了inference的预算,而这一点在模型推理时非常关键。当给定一个模型performance目标之后,最好的模型不是训练最快的模型,而是推理最快的模型。尽管在这种情况下,训练一个更大的模型成本会更低。

文献[2]中推荐,训练一个 10B 的模型,需要 200B 的 tokens,而本文的实验发现,一个7B的模型,经过 1T tokens 训练之后,performance 仍然在增加。本文的目标在于,通过在超大规模的数据上训练,给出一系列可能最好 performance 的 LLM。

二、预训练数据

2.1 数据集

一共有1.4T的tokens,大部分的训练数据都只用了一次,除了Wikipedia 和 Books 使用了大概2个epochs。

Pre-training data

2.2 tokenizer

使用byte pair encoding (BPE) 算法,使用的是Sentence-Piece的实现。所有数字被拆分为单独的digit,所有未知的UTF-8 字符,回退到字节来进行分解。因此,LLaMA 可以通过byte 的方式,构造出很多不在 vocab 中的字符,从而也具有较好的多语言能力。

三、网络结构改进

使用了基于transformer的架构,并做了如下3点改进:

3.1 Pre-normalization

为了提高训练的稳定性,对每个transformer层的输入进行归一化,而不是输出进行归一化。

同时,使用 RMS Norm 归一化函数。RMS Norm 的全称为 Root Mean Square layer normalization。与 layer Norm 相比,RMS Norm的主要区别在于去掉了减去均值的部分,计算公式为:

RMS Norm 的作者认为这种模式在简化了Layer Norm 的计算,可以在减少约 7%∼64% 的计算时间[3]。

class LlamaRMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        LlamaRMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)

        return (self.weight * hidden_states).to(input_dtype)

3.2 SwiGLU

使用SwiGLU替代了ReLU作为激活函数。和PaLM中不同,维度采用而不是 4𝑑 。

SwiGLU 在论文[4] 中提出,相比于其他的激活函数变体,可以取得 log-perplexity 的最优值(和 GEGLU 并列)。

GLU Variants Improve Transformer

SwiGLU 及几种类似变体的计算公式如下:

其中,。代码如下:

class LlamaMLP(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
    ):
        super().__init__()
        self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
        self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
        self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
        # config 中 hidden_act = 'silu'
        # 'silu' 和 'swish' 对应的激活函数均为:SiLUActivation 
        # https://github.com/huggingface/transformers/blob/717dadc6f36be9f50abc66adfd918f9b0e6e3502/src/transformers/activations.py#L229
        self.act_fn = ACT2FN[hidden_act]

    def forward(self, x):
        # 对应上述公式的 SwiGLU
        return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))

从代码可以看到 LlamaMLP 中一共有 3 个 Linear 层,原因就在于 SwiGLU 激活函数比类似 ReLU 的激活函数,需要多一个 Linear 层进行门控。

3.3 RoPE

RoPE 的核心思想是“通过绝对位置编码的方式实现相对位置编码”,可以说是具备了绝对位置编码的方便性,同时可以表示不同 token 之间的相对位置关系。[5] 不同于原始 Transformers 论文中,将 pos embedding 和 token embedding 进行相加,RoPE 是将位置编码和 query (或者 key) 进行相乘。具体如下:

Rotary Position Embedding

其中,左侧的矩阵 𝑅𝑚 表示位置第 𝑚 个位置的位置编码,右侧的向量 𝑞𝑖 表示对应位置的 query 向量。两者相乘,即可得到增加了位置信息的 query (或者 key)。由于 𝑅𝑚 的稀疏性,上述矩阵乘法可以等价于:

Rotary Position Embedding 的简化实现

其中 ⊗ 是逐位对应相乘,

RoPE的代码实现如下[6]:

# 代码增加了注释,可以看到和原始公式的对应关系。
class LlamaRotaryEmbedding(torch.nn.Module):
    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
        super().__init__()
        # 此处 inv_freq 对应公式中的 theta
        inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
        self.register_buffer("inv_freq", inv_freq)

        self.max_seq_len_cached = max_position_embeddings
        t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
        # 此处 freqs 对应公式中的 m * theta, t 对应公式中的 m,表示位置
        freqs = torch.einsum("i,j->ij", t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        # 此处和原始公式不同,theta_0 和 theta_0 不再相邻
        # 而是分在向量的前半部分和后半部分
        emb = torch.cat((freqs, freqs), dim=-1)
        dtype = torch.get_default_dtype()
        self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
        self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)

    def forward(self, x, seq_len=None):
        # x: [bs, num_attention_heads, seq_len, head_size]
        if seq_len > self.max_seq_len_cached:
            self.max_seq_len_cached = seq_len
            t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
            freqs = torch.einsum("i,j->ij", t, self.inv_freq)
            # Different from paper, but it uses a different permutation in order to obtain the same calculation
            emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
            self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(x.dtype), persistent=False)
            self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(x.dtype), persistent=False)
        # 大部分情况下,直接从这里返回
        return (
            self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
            self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
        )


def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    # 此次和原始推导中不同,正负号不是间隔的,而是分前半部分和后半部分。但对于结果没有影响
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
    # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
    cos = cos.squeeze(1).squeeze(0)  # [seq_len, dim]
    sin = sin.squeeze(1).squeeze(0)  # [seq_len, dim]
    cos = cos[position_ids].unsqueeze(1)  # [bs, 1, seq_len, dim]
    sin = sin[position_ids].unsqueeze(1)  # [bs, 1, seq_len, dim]
    # 对应上图中 RoPE 的简化计算
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed

四、高效实现

加速训练:

  • 使用了xformers库。
  • 减少了activation checkpointing 中,重新计算 activation 的计算量。手动实现 transformer 层的反向传递函数,保存了计算成本高的 activations,例如线性层的输出。
  • 通过使用 model parallelism 和 sequence parallelism 来减少显存的使用量。
  • 尽可能地将 activations 的计算和GPU之间的通讯进行并行。

加速效果:

  • 65B的模型,在2048个80G的A100 GPU上,可以达到380 tokens/sec/GPU的速度。训练1.4T tokens需要21天。

五、主要结果与结论

Massive Multitask LanguageUnderstanding

LLaMA-13B 优于 GPT-3,尽管只有1/10大小。 LLaMA-65B 是可以与 Chinchilla-70B 和 PaLM-540B 这种最佳的LLM相竞争的模型。经过微调之后,LLaMA的效果有显著的提升。

未来打算发布在更大的语料上预训练上的更大的模型,因为随着数据和模型的增大,可以看到 performance 的稳定提升。

优化器

LLaMA使用了AdamW优化器进行训练,优化器的超参数为 =0.9, =0.95

(关于AdamW这个大模型训练的优化器,可参考当前训练神经网络最快的方式:AdamW优化算法+超级收敛 | 机器之心[6])

下表为LLaMA不同参数大小模型的具体设置:

表2: LLaMA不同参数大小模型的具体设置

参数维度(dim)head个数layer层数学习率batch sizetoken数量
6.7B409632323.0e−44M1.0T
13.0B512040403.0e−44M1.0T
32.5B665652601.5e−44M1.4T
65.2B819264801.5e−44M1.4T

训练结果

如下图所示,7B、13B、33B和65模型的训练损失均呈下降趋势,且在所有token上训练完后,loss仍没有收敛的趋势。因此,在此时,增加训练的token数量,仍然可以使模型继续学习。

(LLaMA2就是在此结论的基础上,使用了更多的token进行训练)

020f808566e73586ea9239922bce9824.png

高效部署

研究团队做了一些优化来提高模型的训练速度:

  1. 因果多头注意的有效实现:使用因果多头注意的有效实现来减少内存使用和运行时间。该实现可在xformers库中获得,其灵感来自于固定激活值显存优化和FlashAttention。这是通过不存储注意力权重和不计算由于语言建模任务的因果性质而被掩盖的key/query分数来实现的。

  2. 激活重计算:为了进一步提高训练效率,通过检查点减少了在向后传递过程中重新计算的激活量。更准确地说,节省了计算成本高的激活,比如线性层的输出。这是通过手动实现transformer层的backward函数来实现的,而不是依赖于PyTorch的autograd。

  3. 模型并行和序列并行:为了从这种优化中充分受益,需要通过使用模型和序列并行来减少模型的内存使用。此外,还尽可能地重叠激活的计算和gpu之间通过网络的通信。

笔者NOTE:LLM的高效训练是LLM工程实现的基础,对于这部分,各位小伙伴还是需要深入地了解一下各种并行策略、因果多头注意的有效实现、 激活重计算、混合精度训练。

参考

  1. ^Training Compute-Optimal Large Language Models https://arxiv.org/abs/2203.15556
  2. ^Training Compute-Optimal Large Language Models https://arxiv.org/abs/2203.15556
  3. ^Root Mean Square Layer Normalization https://arxiv.org/pdf/1910.07467.pdf
  4. ^GLU Variants Improve Transformer https://arxiv.org/pdf/2002.05202.pdf
  5. ^Transformer升级之路:2、博采众长的旋转式位置编码 Transformer升级之路:2、博采众长的旋转式位置编码 - 科学空间|Scientific Spaces
  6. ^transformers/src/transformers/models/llama/modeling_llama.py at main · huggingface/transformers · GitHub

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/593611.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

带权并查集

续前章节:并查集及应用 目录 1 带权问题1.1 点带权1.2 边带权 2 例题2.1 家族合并2.2 信息传递2.3 [NOI2002] 银河英雄传说 1 带权问题 1.1 点带权 用num[i]记录节点 i i i 所在的集合的数量。 初始化:所有的num[i]都是 1 1 1,因为每个点…

公考学习|基于SprinBoot+vue的公考学习平台(源码+数据库+文档)

公考学习平台目录 目录 基于SprinBootvue的公考学习平台 一、前言 二、系统设计 三、系统功能设计 5.1用户信息管理 5.2 视频信息管理 5.3公告信息管理 5.4论坛信息管理 四、数据库设计 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八、源码获取&…

Spring 原理

🎥 个人主页:Dikz12🔥个人专栏:Spring学习之路📕格言:吾愚多不敏,而愿加学欢迎大家👍点赞✍评论⭐收藏 目录 Bean的作用域 代码实现 观察Bean的作用域 Bean的生命周期 Spring …

[单片机课设]十字路口交通灯的设计

题目要求: 模拟交通灯运行情况。南北绿灯亮30秒,南北黄灯亮3秒,东西红灯亮33秒;南北红灯亮33秒,东西绿灯亮30秒,东西黄灯亮3秒;要求数码管同步显示时间的倒计时,用定时器实现延时。…

Java_从入门到JavaEE_07

一、数组的排序(冒泡排序) 原理: 从下标“0”开始,相邻两个元素依次进行比较,每次找出最大的往后移动。 规律:N个数字来排队,两两相比小靠前,外层循环N-1,内层循环N-1-i…

error LNK2001: 无法解析的外部符号 “__declspec(dllimport) public: __cdecl ......

运行程序时,报如上图所示错误,其中一条是: ReflectionProbe.obj : error LNK2001: 无法解析的外部符号 "__declspec(dllimport) public: __cdecl osg::Object::Object(bool)" (__imp_??0ObjectosgQEAA_NZ) 报这个错误一般是因为…

MongoDB详解

目录 一、MongoDB概述 1.MongoDB定义 2.MongoDB主要特点 2.1文档 2.2集合 2.3数据库 2.4数据模型 二、安装MongoDB 1.Windows安装MongoDB 1.1下载MongoDB 1.2安装MongoDB 1.3配置MongoDB 1.3.1可能遇到的问题 1.4安装一盒可视化工具 2.Linux安装MongoDB 2.1下载…

鸿蒙内核源码分析(用栈方式篇) | 程序运行场地谁提供的

精读内核源码就绕不过汇编语言,鸿蒙内核有6个汇编文件,读不懂它们就真的很难理解以下问题. 1.系统调用是如何实现的? 2.CPU是如何切换任务和进程上下文的? 3.硬件中断是如何处理的? 4.main函数到底是怎么来的? 5.开机最开始发生了什么? 6.关机…

WPF之XmlDataProvider使用

1,WPF XAML支持数据提供(DataProvider),但其提供的数据只供查看不可进行修改,删除,添加等。 数据提供者都继承自System.Windows.DataSourceProvider类,目前,WPF只提供两个数据提供者…

Stream流操作

看到Stream流这个概念,我们很容易将其于IO流联系在一起,事实上,两者并没有什么关系,IO流是用于处理数据传输的,而Stream流则是用于操作集合的。 当然,为了方便我们区分,我们依旧在这里复习一下…

深度学习:基于Keras,使用长短期记忆神经网络模型LSTM和RMSProp优化算法进行销售预测分析

前言 系列专栏:【机器学习:项目实战100】【2024】✨︎ 在本专栏中不仅包含一些适合初学者的最新机器学习项目,每个项目都处理一组不同的问题,包括监督和无监督学习、分类、回归和聚类,而且涉及创建深度学习模型、处理非…

今日早报 每日精选15条新闻简报 每天一分钟 知晓天下事 5月5日,星期日

每天一分钟,知晓天下事! 2024年5月5日 星期日 农历三月廿七 立夏 1、 近日国际金价大幅震荡,跌至近一个月新低。 2、 2024亚洲少年攀岩锦标赛:中国选手包揽U14和U12速度赛男女组前三名。 3、 马来西亚将进一步优化中国游客入境程…

【详细教程】手把手教你开通YouTube官方API接口(youtube data api v3)

文章目录 一、背景调查1.1 youtube介绍1.2 分析价值与意义1.3 API接口介绍 二、申请接口权限2.1、注册Google账号2.2、创建项目2.3、启用youtube data api v3服务2.4、创建凭据 三、后续发布 一、背景调查 1.1 youtube介绍 众所周知,youtube是目前全球最大的视频社…

MyCat安装配置,及数据分片

🍓 简介:java系列技术分享(👉持续更新中…🔥) 🍓 初衷:一起学习、一起进步、坚持不懈 🍓 如果文章内容有误与您的想法不一致,欢迎大家在评论区指正🙏 🍓 希望这篇文章对你有所帮助,欢…

Python深度学习基于Tensorflow(1)Numpy基础

numpy的重要性不言而喻,一般不涉及到GPU/TPU计算,都是用numpy,常见的np就是这个玩意。其特点就是快!其实如果不涉及到深度学习,还有一个库是很重要的,scipy,集成了很多的东西。 安装和导入如下…

002-ChatGLM4接入Langchain

智谱AI GLM-4 新一代基座大模型GLM-4,整体性能相比GLM3全面提升60%,逼近GPT-4;支持更长上下文;更强的多模态;支持更快推理速度,更多并发,大大降低推理成本;同时GLM-4增强了智能体能力。 基础能力(英文):GLM-4 在 MMLU、GSM8K、MATH、BBH、HellaSwag、HumanEval等…

[云原生]Docker-compose:一站式多容器应用部署神器

目录 引言 一、Docker Compose 简介 (一)基本信息 (二)核心特性 (三)文件格式 二、Docker Compose 环境安装 (一)准备安装包 (二)添加执行权限 三、…

[Meachines][Hard]Napper

Main $ nmap -p- -sC -sV 10.10.11.240 --min-rate 1000 $ curl http://10.10.11.240 $ gobuster dir -u "https://app.napper.htb" -w /usr/share/wordlists/seclists/Discovery/Web-Content/raft-small-words-lowercase.txt -k 博客 $ ffuf -c -w /usr/share/se…

深入学习和理解Django模板层:构建动态页面

title: 深入学习和理解Django模板层:构建动态页面 date: 2024/5/5 20:53:51 updated: 2024/5/5 20:53:51 categories: 后端开发 tags: Django模板表单处理静态文件国际化性能优化安全防护部署实践 第一章:模板语法基础 Django模板语法介绍 Django模…

Windows如何安装hadoop

Hadoop是一个开源的分布式计算平台,旨在处理大规模数据的存储和处理。它提供了分布式文件系统(HDFS)和分布式计算框架(MapReduce),使得用户能够在大规模集群上存储和处理数据。Hadoop最初由Apache软件基金会…
最新文章